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Radiation of a Hertz Dipole Moving 

around a Conducting Sphere 

John Lam 

ABSTRACT 

An exact expression is obtained for the field of a horizontal 

Hertz dipole moving around a conducting sphere in a circular orbit. 

This expression is in the form of a double series which, in the case 

of a large sphere, is evaluated by the method of Watson transformation. 

The geometrical optics field is separated out and its properties 

examined. It is found that the incident and reflected waves are of 

different frequencies. 



2. 

1. Introduction 

The problem of wave scattering by a spherical object occurs in 

many branches of science and engineering. In the majority of cases the 

source of the wave is fixed relative to the sphere. A rigorous solution 

is in general obtainable by the method of separation of variables, 

giving the scattered wave as an infinite series of eigenfunctions. If 

the radius of the sphere is large compared to a wavelength of the inci- 

dent wave, the convergence of the series is very slow. The method of 

Watson transformation Is then applied to convert this series into a more 

rapidly convergent series of "residue waves". This method of solution 

can be carried over, with only minor extensions, to problems Involving 

moving sources. In this work we calculate the radiation field of an 

oscillating electric dlpole revolving around a perfectly conducting 

sphere. This problem is an idealization of the situation of a transmit- 

ting antenna carried by-an artificial satellite in an orbit around a 

planet. 

2. The Hertz Potential 

We set up a spherical polar coordinate system whose origin coin- 

cides with the center of the conducting sphere, the radius of the sphere 

being   b  .    The oscillating electric dlpole revolves in a circular orbit 

of radius    a   in the x-y plane, given by    r«a>b,e« ir/2 .      To 

simplify the problem we assume it to be polarized in the z-directlon. 

Without further loss of generality we can write down its electric polari- 

zation as follows: 

• 
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P(r.t) pe 
-iu t o 

r28in 0 
6(r-a)  6(0 - f) «(0 - nt) e (2.1) 

where    p    is its electric dipole moment, ß    its frequency of revolution 

around the sphere, and    w      its proper frequency of oscillation increased 
OO     9-1/9 

by the dilatation factor    (l - JTa /c )        . 

To find the field of the moving dipole we first calculate the Hertz 

potential   Jl(r,t)    which satisfies the wave equation 

P(r,t) 
if -K-**) n(r.t) 

c   at^ 
(2.2) 

Because of our particular choice of the polarization this is really a 

scalar equation with 

n(rtt)    -    n(rtt) e — — —       ^ (2.3) 

The angular delta-function 6(0 -fit) is a periodic function and has the 

Fourier series representation 

.(# - ot) • fc I .lB<0-nt) 
2ir m«-« 

(2.U) 

Putting (2.10 in (2.2) and expanding 

• im0 -i(b) + mn)t 
n(r,t) -      I    niii(r.O) e 

Iff"—00 

we obtain the equation 

,2 m 
r 3rZ r sin 0 a0 "     r^sin^O 80-    2._2. + km)nm(r'0) 

- -^ 6(r-a)  6(0 - f) 
2ife aT o 

(2.5) 

* • 

(2.6) 



k. 

For convenience ve have defined the quantities 

mo mo 

ko - uo/c . K   -    Jl/c (2.7) 

To solve equation (2.6) ve divide the whole space into regions 1 and 

2 according to   r < a    or   r > a , respectively.    In these regions the 

solutions of (2.6) are 

(2.8) 

n«(r»0)    "    1    B£m ^(kma) h[l){Kr) ^'o* •>.'>• 

n      is chosen to be finite at the origin, and   It     satisfies the radiation m in 

condition at infinity.    The constants    A.     and   B.      are determined by 

1 2 the boundary conditions'on the sphere    r»a .    First    n      and    ü     are 

continuous across the boundary* and ve get 

Second ve integrate both sides of (2.2) over the volume of a flat pill- 

box of infinitesimal height bounded by the surfaces    r ■ a - e    and 

r " a + e  .    The second term on the left-hand side gives negligible con- 

tributions since    n(r,t)    is continuous across    r • a .    Using the Gauss 

divergence theorem on the first term, ve get 
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5. 

I 72n(r,t) dV 

(2.10) 

The contribution to the surface Integral from the side of the pill-box 

Is negligible.    On the other hand the right-hand side of (2.2) gives 

I- P(r,t) 
dV 

-11 9 .       -iaWb 

a sin 0 dO d0  ^ e 
e    a o 

Comparing (2.10) and (2.11) ve have the boundary condition 

i£«*(*»)I«*.- F nl(^t) 
r*a-c 

-iw t 
i      0    6(0 

Eoa 

f)   6(0 - fit) 

6(0 - |)  6(0 - fit) (2.11) 

(2.12) 

The right-hand side can be expanded Into a series of spherical harmonics 

by means of the orthogonality relation 

, idn-m')0 
pJ(cos 0) Pj.fcos 0) e dfl 

Itt 
2Ä+1 \m T 6U'  6mm, 

The result Is as  follows: 

(2.13) 
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-iu t 

e    a o 

6(0 - j) 6(0 - at) 

o 

Putting (2.5),  (2.8),  (2.9) and (2.11+) Into (2.12) we get 

»!•■ ifr'^'ffeteHf^'V •      N<J 

m    >  £ 

Here vise has been made of the identity 

(2.15) 

4t(t) ^^'(z) - j;(z) h^Ct) -   ^ (2.16) 

Hence ve have 

n1(r.t)^ »     I 

n2(r.t)' 
TrE_   J      l      (21*1)  (}"|i||[ P^(0) Ik 

hil)(kma) ^V^l im0-iUt 
x   i ]   Pj(co8 0) e m (2.17) 

We notice that the frequency spectrum of n(£,t)  consists of discrete lines 

at    ü)   «    u   + mfi m o 



7. 

3. The Incident Field 

The Incident electric and magnetic fielIs are derived from the Hertz 

potential according to the equations 

cinc - v x(vx n)   ,   cBinc - i^v x n (3.1) 

In what follows we only need to know the radial components.    These are 

given hy 

,2 
CB: 

inc        11      3 
r c  3t  30 n 

,lnc f    sin 0       32 

Jr        ~   j "      r        3r 30 
2 cos 0 3        sin 0    3 

r    " 3r 2    30 

+    co8^i(__^^   sinö 

2    v    sin 0 30 dW      sin20 302J 
(3.2) 

Substituting (2.17) into (3.2) we have 

cBinc .    1    J      J     A 
r .•*-   _*• ,    im     m £■1 m"-A 

"t^'V i.'V» 

VV> "i^'V 
F^(co8 0)e 

im0 - lu t m 

jlnc 2 cos 0 A     k oo   o 

h^^k a) J'(k r) o       m        on 

J0(ka) ^^(kr)' o   m       o m 

-lu t o 

l«l  WF-l 

KI^W WVi /h^MkaM-r H-1'V\  ffi 
1       m (A-l)(l*|m|)    (l) P^^cosW) 

* (l*2)U-\m\*l) I   **   ^ I P?+1(co8 0)1 e 
im0 - Iw t m (3.3) 

1+1'm* 
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i.nc 
In deriving the expression for I*   ve have used the Identities r 

u. ,2) p»'(Z) ,iiaLUitliii^i(.). I^MJU^., . 

z K£VZ'      2£+l    H-V*'        2U1      PUllz;    • 

1 
2£+l 

Jl(.) J£-1(Z) 

2£+l 

•U^W 24+1 lh<i>(.) 

Jui(z,l 

Jul(.) 
+ 2£+l    Ld)/,^ 

h£+l(z) 

O.U) 

inc After some rearrangement ve can vrlte   E       in the simpler form 

-     £ 
J™ 'l   I     I     C.     ( P r itl mi-»    £m   1 

lm0 - lu t 
Pj(cos 0)e m 

vhere 

h^Oca), 

cto-k 
T (£+l)(£-|m|)    /n£-lVKmaM 

mLA£-l.m—TTTT-  \^^J 

(3.5) 

&}(* a) 
+ A £+1 

£(£+|m|+l)   /nUlVKmaM"| 

.m -^nrr-l     (    JJ 
£+lx m 

Substituting (2.13) Into (3.6) ve get 

C 

hi-l(V' 
£m 

J£-lUm 

/ hJi.^k a) i i 
*    £(£.|m|+l) P?+1(0)        * 

£+lx m 

(3.6) 

(3.7) 
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From the first and second identities of (3.U) we get 

9. 

U+|m|)  P^CO) - -  (£-1 = 1*1) Pj+1(0) 

-    <(0) 

Also from the third and fourth identities of (3.U) we get 

(3.8) 

U+l) 
>£i<V> 

J4-l(kma) 

- I 

21+1 
[kah^k a]' m    &       m 

kma   *[k a J.(k a)]' m      Km 

(3.9) 

Using (3.8) and (3.9) we simplify (3.7) to the form 

£m      kvc (£+ m )!     £ a 

ik /tv^V^' 
iWtK*»' (3.10) 

To suirmarize the results of this section we write out in full the 

expressions for the radial components of the incident fields: 

cB inc.      P l      j    (2£+l)fe m 
m If ^ < 

h^^ka) jJk r)t      m la^-iait 
1       m        i   m P^(co8 0) e m 
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*inc-i^v   l   I '^ {»<'<» T1 Ik 
i 

X 

PJ(CO8 0) e     m   (3.11) 

Inc 
In the second equation E    appears to be discontinuous on the sphere 

r ■ a . This discontinuity is only apparent. The difference in the 

inc 
epressions for E    on both sides of r » a is an infinite series r 

vhich can be shown to converge to zero everywhere except at the source. 

k.    The Debye Potentials 

To describe the scattering of electromagnetic waves by a sphere it 

is most convenient to work with the Debye potentials    u   and   v , from 

which the fields are derived according to the formulas 

/    1 3u v 
E ■ - 7x(r — rr + r x 7vj - - c 3t      - 

cB » - 7x(r * 7u - r 7I7) (k.l) 
— — — C   3t 

E    and   B   given by {k.l) are solutions of Maxwell's equations in free 

space provided that    u    and    v   separately satisfy the scalar wave equation 

(V2 - i*.J5.) (»)    -    0 (1*.2) 
c   at 

Writing out {k.l)  in component form we get 

2      2 
Er * (—' "a—) rv 
r   3r   c it 
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0 r sin 0 c H 90   r 3r 30 

0 r c 3t 30   r sin 0 3r 30 

32  1  32 
cB - (-*- - ir- -2-) ru 

r 3r2  c2 3t2 

CB . I 32(ru) ^ _1 I 32(rv) 
CD0 r 3r 30   r sin 0 c 3t 30 

cB, 
0 

1   32(ru)  1 1 32(rv) 
r sin 0 3r 30 " r 7 3t 30 (1».3) 

Thus u generates a magnetic wave and v an electric wave.  It is also 

clear that they are determined by the radial components of the magnetic and 

electric fields respectively. 

Since u and v are solutions of the scalar wave equation, they 

have the eigenfunction expansions 

4=1 m»-£        \ 

'h^Oc a) j,(k r). I       m     "i    m     \ 

JiV hlx>(k.r) 

_m/        -\    im0- iu^t Pj(co8 0) e m 

Ä 

«1 m«-£ \ 

[k a hB
(l)(k a)],J(,(k r) m      Am        ul    m 

"v W)i,hlI)"v) 

im0 - iu t 
Pj(cos 0)e m 

(U.l») 

To get    E      and    cB     we operate on    ru    and    rv   with the operator 

2 2 3*      1      3* 
2        2      2 3r        c^ 3t'i 

as indicated in (U.3).    Because of the following equation, satisfied by 
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the spherical Bessel arid Hankel functions 

X4 i. iÜÜi 
3z z^hz) (It.5) 

this operation merely brings In a factor t(4+l)/r . Thus comparing 

(3.11) and (k.k) we Immediately obtain the expressions for the Debye 

potentials of the Incident field: 

Inc u P r       r      24+1       U- m  ) 
^ £ii mi-£ I7I*r) ^PT) 

^(O)ml^ 

im0 - J u) t 
^(cos Q) e m 

Inc t- P       r       f       2U1        ( 
»we-      , o £«1 nF-£ 

m 
m 

t^^^V^'  J£(kmr) 

[k a Jfl(k a)]' h^^k r)i m    "£   m £        m 

lm0- lu t 
Pj(cos ö) e m 

(U.6) 

5.    The Scattered Field 

The scattered field Is determined by the boundary conditions on 

the perfectly conducting sphere: 

B tot 

E, tot 

E, tot 

Binc ♦ B8C 

r r 

EjnC ♦ E5C 

Einc ♦ E!C 

0 

0 

0 ,      r ■ b < a (5.1) 

* 
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The scattered electric and magnetic fields can be derived from a pair of 

Debye potentials    u       and    v8C    which have outgoing-wave eigenfunction 

expansions similar to {k.h) with unknown coefficients.    These coefficients 

are determined by putting    u      , v        and v      into (5.1).     In this way we 

easily get 

sc P        r     r     2ft+i     Ur.m ii T5ni/r,\    A u2 

O     Jt=l  Ws-iL 

m JB(km
b^        (t\ m in0-iwt 

x    h ^(k a) 4^ h ^(k r) P^cos 6)  e a 

*      m    h^Ckb)   l      m l 

x.        m 

sc 
V 'TUT   I     l 0 TT&l)  Ul\m\)l    ?l (0) T 

hr [k b Jj(k b)]' hv 
x    [k ah ^(k a)]'  -m      If Klhamr) ^AoosQ) 

m     l       m [kbh^Ckb)]'     l       m        t 

m      &       m 

im0 - iu) t 
x   e m ,    r > b      (5.2) 

These solutions are exact. 

6.    The Watson Transformation 

If we have in mind the application of the solution of this problem 

to the case of a dipole antenna travelling around a planet, the expres- 

sions for the Debye potentials given by (5.2)   are practically useless. 

The reason is that in this situation    k b >> 1 , and the convergence of 

the series is extremely slow.    To get a good estimate of the sums we have 

I 
r 
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to include terms up to values of    £    of the order of   k b .    An alterna- 

tive to direct summation is the method of Watson transformation . 

Let us first consider the total Debye potential of the magnetic 

wave for    r > a : 

tot        inc J    sc u        ■ u       + u 

►we. 

00 00 

ni=-oo   t»! 

[Vkm6)- -frr— hi (kma) 
KB* 

(6.1) 

The order of summation has been inverted so that    m   is now summed from 

—   to    « .    This is permissible since    P^(co8 0) « 0,  (£-|m|)l  P^(0)    is 

finite for     |m|   > I .    Using the addition theorem 

P (cos 0 cos O*  + sin 0 sin 01  cos 0) 

I 
m»-Jl f. {Ä-pI(c°";"p?(<:os(',) im0 (6.2) 

we get 
2IT 

Ifejafjj-^O) Pj(cos Ö) - ^j    P^sin 0 cos *'U'**'  <*' (6.3) 

u 0    can now be rewritten as 

tot u 

2IT 

,-JL f d0' i-   £      mik2 
kite    I 2ir    ^              m o  i BP*** 

im(0-0,)-iu) t 

V    m 

where 
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m 
V      2U1    [„(2) 

1+4 v m  ' (1) 

m «1^ «V 

"^'V Vsln<":M0''(6.5) 
We define 

cos i|)    = sin 9 cos 0' (6.6) 

v    =    £ + 2 (6.7) 

Then, since    P-(z) ■  (-1)    Po(-z)    for    Ä    «^ integer,    S     becomes 

m a I    ^T k2)W - C^ -i1''V'l ''(1)
1 'V> v:3/2v2-*-Lv       B H(1,(k b)    v       m   J     v-i     m 

v       m 
1 

(-1)        C   P        1(-C08   *) 

V-2 

(6.8) 

If each term is considered as a function of the complex variable    v   this 

sum can be converted into a contour integral in the complex v-plane (see 

Fig.   1): 

(D. 
8«--M 2 1 

c V-F 

H(2)(k b) H(2)(ka).^ViH(l)(ka)j 
v        m        H(1,(kb)    v        m    J v       m 

v- j-     m 

cos vir 

x      P (-cos i) dv 
v-i 

(6.9) 

The contour C encloses the positive real axis along which are the posi- 

tive poles of 1/cos vw . All other singularities of the integrand are 

to be excluded. The residues at these poles give back the sum (6.8), 
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except for the contribution from the double pole at    v ■ 1/2 which 

ve must subtract off.    This is equal to 

» 'V  (v*i   l   V ■ H(1)(kb)     V ■n    J      v-1      » 
v       m 

x      P      .(- cos  (|() }-* (6.10) 

We ignore this term for the moment. 

Let us consider the symmetry of the integrand in  (6.9) with respect 

to   v   .    The Legendre polynomial can be defined in terms of the hypergeo- 

metric function: 

1-z, 
Pt(z) - gFjU-H.-iili**) (6.11) 

The hypergeometric function being symmetric with respect to the exchange 

of its first two parameters, we get 

?    At) 
V- i 

2 

P        Az) 

-"4 
(6.12) 

that is,    P      1 (-cos  t|»)    is an even function of    v .    From the relations 
v-2 

£>(.) 

H«'(.) 

elv" H(l)(z) 
V 

e-ivir H(2)(z) (6.13) 

We see that the factor involving the Hankel functions is also an even 

function of    v .    Thus the entire integrand is an odd function of   v .   In 

this case the integration along the lower branch of the contour   C   can 

be replaced by one along its image with respect to the origin in the second 

f 
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quadrant, as shown by the broken line in Fig. 1. The integral is now 

to be evaluated along a contour C.  lying Just above the real axis: 

i  V - T 
Cl '   * 

(7» H!  (km
b)   (1) H(2)(k a) - -rrr-2— V h* a)] 

V   m H^Ot b)  V   m 
v   m 

h(l)1(k r) 

COS Vff     V- — 
P  ^^(-cos ij»)dv  .   (6.1U) 

In a similar way we consider the total Debye potential of the electric 

wave for   r > a: 

tot inc J    sc v       + v 

^J.lÄ&felK'0'^ 'o m*-* A»l 

Ik b Jj(k b)]' ,.. 

m    ''A    m [kb h^'Ub)]' 
hJ^Ck r)  x 

im0 - iu t 
x      P^cos 0) e n (6.15) 

Using the addition theorem (6.2) we get 

{fejSfK"»^«»«: 
2TT 

cos 9 
2ir 

(6.16) 

Thus 

tot r>       t ,       «      ik ik     ^(0-0*)- iw t m /«          3 Q T7 TT T    cos 0 8 3(cos <ii)    m 

(6.17) 



18. 

where 

v»3/2 v - T- L 

m      v        m 

[/Tb H^^kb)]' 
n      v       B 

v-i 
[ /FlH^^k a)]'] h(l)

n   (k r)(-l)   " 2P     1 (-cos * 

(6.18) 

T      cem be converted into a contour integral by the Watson transformation: 

T   «-id m 
6 V-Tr 

t v» r, (P)       [/Tb H^^kb)]' 
,-^-Y   [^^(ka)]'  -     JLl)*  

2    1L      m      v       m [/Tb H ^(kb)]' 
[/r7H(l)(k a]' m m 

m      v       m 

h(l)
i(k r) 

v'2 "■■■ P        (-cos t|>) dv 
cos  vir v " p 

(6.19) 

The contribution from the double pole at v ■ r to be subtracted off is 

a f   ,      r   ,    {9s [^Tb H(2)(k b)]'            ,.. I 
r    - 2/<-^-T    [^rTH(2)(ka)]' m      fo-S    [»TI H(l)(k a)]' 3vlv*iL  m   v   »>       [^rbH(1)(kb)]'     m   ^ v^yjJ 

v.       e m      Yi       m 

h^^  (k r) P       (-cos *) 
(6.20) 

Hie integrand in (6.19) is again an odd function of      v .    The integral 

can be evaluated along a contour lying Just above the real axis: 

— —r- 
. 
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v5 
[/rbH(2\k b)]» 

B iv2-il     B     V       m [/Tb H(1,(k b)]« m     v       m 

[yTTH^^k a)]' m      v       m 

hd) (V) 

cos  vir      v-* 
P        (-cos *) dv      (6.21) 

We now consider the contribution from the pole at v ■ 1/2 . After 

tot and some straightforward calculations we find that the parts of u 

v   due to o  and T  Jointly give, upon substitution in (U.3), iden- 

tically zero contribution to the total field. From now on these parts 

will be discarded. 

7. Separation of the Geometrical Optics Field 

We want to evaluate the contour integrals (6.110 and (6.21) asymp- 

totically in the limit of a very large sphere: k b > > 1 . For this 

2 
purpose it is most elegant to use a method due to Franz to separate the 

total field into two parts. One part can be identified with the geomet- 

rical optics field, and the other is in the form of a series of damped 

"creeping waves". 

As will be seen below, for k b >> 1 , most of the contributions * m ' 

to the integrals  (6.lM and (6.21) come from large values of    v    of the 

order of   k b  .    From the identity m 

Pv(-co8 *) - eiv1T Pv(cos ♦) -i sin vir[Pv(co8 ♦)-i f Qv(co8 *)]      (7.1) 

and the asymptotic formulas 
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PV(C08   <0   W 2 C08[(V   ♦  |)*   -   I] 
V irv sin ij; en 

*• Qv(co8 i|;) ^ Pi 
r nv sj sin 9 

cos[(v + -)!); + f]   ,   |v sin ii\   » 1 (7.2) 

we get 

v-* /2itvsin ij» v_l 

v sin ii\   » 1 (7.3) 

Thus for    sin ip »< 0   we can substitute (7.3) into the integrals, each of 

which is now separated into two parts: 

S    «    Sg + SCr 

m m        m 

T   ■    T8 + Tcr 

n in       in il.k) 

where 

•:•/ e 
if sin * I #?[<"'"■•'-SS <""■•' 

•. ■' 
v    """m 

fi.f -i 

x    h^^   (k r)  eiv*dv 1     in 
V-2 

[^Tb H.(2)(k b)]' 
ir sint/< 

f      ^    r,,     fo) L/k b r-'Ck b)J 
"ft-T. [/kT H^^k a)]' SLv BL- 

Cl    '-* 

[^•H(l,(kma)]']h(l)    (km: 
J    v-i- 

m   "v    '  m 

r) eiv* dv (7.5) 

. 
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m --[trb 
C^k 

(2)(k a) -     y   ■     m      H(1)(k a) 
V        m H(1)(kb)     V        » v        m 

x       ^ P      1(cos  *) eiv7r dv      , 
COS    VTT V"  p" 

c m -1 ti[/r* cr u 
a H(2)(k a)]' S ^y-S  

V        m [^Tb H(1)(kb)]' m      v     x m 

x      [/TlH^^k a)] m      v        m 
V'g P      ,(co. ♦) elv" dv .     (7.6) 

COS   VTT 2 

In the next  section it will be seen that    Sg    and    Ts    in  (7.5) yield the m m 

geometrical optics field. 

It      i be shown that the integrands in  (7.6) tend to zero at infinity 

in the upper v-plane for    r > a > b  , except in the neighborhood of the 

zeros of   H(1'(k b)    or    [vETlT1^ b)]'.3    For   k b » 1    these are v        m m     v        m m 

located approximately at 

v    = k b + A (k b)1/3 ein/3  ,      s-1,2,3,-" s        m s    m (7.7) 

where the A's are real positive constants which are different  for the 

magnetic and electric waves.    We observe that these zeros lie in a row 

in the first quadrant  (see Fig. 2).    They are simple poles of the inte- 

grands and are the only singularities in the upper v-plane.    The straight 

contour   C.     can now be deformed to the contour    C«   which encloses these 
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poles, as shown in Fig.  2.     The residues obtained from these poles  form 

an infinite series of "residue waves" which are rapidly convergent  for 

largo    k b .    Each term of the series can be interpreted as an exponen- m 

tially damped "creeping wave".     It must be  remarked that we have tacitly 

assumed that the main contributions to    u        and    v        come from terms 

with small m's such that    k b = k b + mKb  = k b >> 1  . 
mo o 

In what follows we will confine our attention to the geometrical 

optics  field, since it is more interesting, besides being the dominant part 

for   k b >> 1 . o 

8.    The Geometrical Optics Field 

We first consider the integral    Sg in  (7.5).    We will evaluate it m 

by the method of stationary phase.    This integral in general has one or 

two stationary points on the real axis in the neighborhood of    v = k b  . 

In order to simplify the problem we take the limit    r >> a   so that we will 
et 

be calculating the far field.     It is now permissible to apply to    3°    the 

Hankel asymptotic  formula 

^   m k_r m 
2 

The case where    r    is of the same order as    a   should present no special 

difficulty; but the calculations that follow would be more cumbersome.  Sub- 

stituting (8.1) into   Sg   we get m 

ik r- ijr   » (2)1 

0« _ rr- » ■    2  f K |>)(k x) 
Hy W n(l)a J 

Sm -/* sin * k^ J  v2. 1 [Hv    ^    ^TT^ Hv    ^J 
-<* k v       m 

lv(* - h 
e ^ dv (8.2) 
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To locate the stationary points we apply to (8.2) the Debye asymp- 

totic formulas for the Hankel functions in the limit when v and z 

are large and comparable: 

H(l)fz)V 
v 

H(2)U); 
v 

ß 1 
^ (z2-v2)1/2+e 

+ i(N/^ 
2      -1 v  n. 

v - v cos  "" " r^ 
, V < z 

v   (v - z , 

v Hn 
v ^ />2- z2  /I  2 
 / V - z 

1A 
, V > z 

(8.3) 

with the condition 

-1 v TT 
0   < cos      -   <    o 

Z £ 
(8.10 

We split    S8    into three integrals 
^ m 

m    y IT 

ik r - i^- 
m 2 

AT 
e kr   ti^i^v 

m 
(8.5) 

where 

Il = 
7    /^    (2) iv(,,'" ^ 
^\H(2,(k a) e 2    dv 

2    1    v        m 
(8.6) 

1^ = - 
r-   H(2)(k b)     ,.. iv(* - J) 
/v      v        m      „(1)/,      x T      2   , 

TT^ry 
k b m 

2    1 „UJ/.   , v    v     ■  m 
v-TrHv   (kmb) 

kmb 

I, ■ - 

,(2), 

J    v2-^H(l)(kb)    v       m 

-oo 14    v m 

(8.7) 

(8.8) 

Substituting the appropriate Debye asymptotic formulas in these integrals 

we get 
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/—  <iL   ^      _ ^ r  i^2~2   ? ^ -l   v 

1   »' i v2- t (kV- v2)1/k 

(6.9) 

I[-|/k^a'-v' ♦ v cos"'1 r^T+^t*-!)) 

.jW- l[4ma - v - v cos     J-J+vC»--)) 

^ "       X v2- f (Ä2- vV 12'^ V. ^T <^2 ^^e 
k b Um 

(8.10) 

k b 

T ß ^     \ ß. 1 

3" V ^ e    J    2i rn   237^ » 1      v - r (k a - v  )  ' r IK e 

. r,/. 2   2 ?      nir^ ? -1       V     .   ^ -1       V      .      /,        TTM 
il^k a - v   -2Vk b - v   - v cos      r--+2v cos     TTT + ^^ - ö" m 'm Ka KD ^ „ mm, x      e dv 

k a > k b >> 1  .      (8.11) m m 

In writing down the atcve expressions we have used the fact that    I.,  and 

I_   have no stationary points to the right of   k a . 

Each of the three integrals has at most one stationary point.    For 

the integral    I.  the location of its stationary point is given by the solu- 

tion of the trigonometric equation 

cos"1 ij:7+ * - f   ■    0 (8.12) 
m 

Because of the condition (8.U), this equation has a solution only when 

^ < j . When this is the case we have 

v = k a sin I|I (8.13) 
m 
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Thus evaluating   I     by the well-known method of stationary phase, Wä 

get 

-ikm
a c08 * j    M      . . , £               m 

> ♦ <f 
*1        (k a sin K»)372 

in 

=    0 > *>i (8.11») 

In the same way the location of the stationary point of !„ is given by 

- cos-1^-^ ,1,-1 . o (8.15) 
m 

Because of (8.U), this equation has  a solution only when    i|; > — .    Then 

the stationary point is given by 

v    =    k a sin \li (8.16) m 

This must be greater than k b or else the point lies outside the lower 
m 

limit of integration.  Hence we have the additional condition for the 

existence of the stationary point: 

sin * > - (8.17) 
a 

Therefore we get 

I2 - 0 . ♦ < §■ 

2       ^V C08 ^    *  , <     < -1 b 
 372 e . 2 < ^ " ^ " 8in  I 

(k a sin \\i) 
m 

, n - sin- — < i|( < IT 1 a  T 

(8.18) 

f 
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The sum   I.  + I«   has a very obvious interpretation in geometrical 

optics.     It represents the incident wave,    ip  as defined in  (6.6)  is the 

angle between the directions  (0,0')    and    (|-,0)  .    Suppose a point source 

of frequency   u      is placed at the point  (a,|-,0)    as shown in Fig.   3.  The 

geometrical shadow region is a cone with apex at the source and angle 

sin"   — .     Inside the shadow region    I,  + I„    is zero.    Outside this a 0 1        2 

region    I,+ I«    contributes a term to    Ss    proportional to x     e m 

.     ik (r - a cos  t|0 -L       m — e r 

which indeed describes the far field of a point source displaced from the 

origin by a distance    a . 

We now want to show that    I_    gives rise to the reflected wave. 

This integral has a stationary point given by 

- cos'1 ^ + 2 cos"1 jpb + * - f   B    0 (8-19) 
m m 

We denote the solution by 

v-kbsinY,        0<Y<^ (8.20) m c 

Then    Y    is the angle of reflection for a ray scattered into a direction 

inclined at an angle    ty   with the x-axis.    This can readily be seen from 

the ray diagram. Fig.  3.    Without loss of generality we have taken the 

z-x plane to be the plane of reflection.    From this diagram we get 

b sin Y    ■    a sin a (8.21) 

where a is the angle the incident ray makes with the x-axis. Using this 
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result in (8.19) we get 

o - 2Y + * ■ 0 (8.22) 

which is Just the law of reflection. Eliminating a from (8.21) and 

(8.22) we obtain 

8lrf ? - ^ - ^ (8.23) sin Y       a 

This  is a quartic equation in    sin Y   which can always be solved.      The 

exact expression  for the solution, however,  is too complicated.    For 

Y > p" , that is, inside the geometrical shadow region  (8.19) has no solu- 

tion and there is no stationary point.    Thus we have 

f  t , b cos Y 

3 " ' (k b sin Y)      v/o J 2    v2 .  2V      . m U 2 /a - b sin Y - b cos Y 

ik^/a2- b2sin2Y - 2b cos Y) _,  b 
xe ,0<I1/<TT- sin     — r a 

0   , ir - sin" — < ü) < ir 
a  T 

(8.2U) 

Summarizing the foregoing results we have 

ik r m rns— i  I" i_ 
r    ^ sin*   k5/2[(a8iM r    ^sin*    ,.5/2L(a8ini|;)3/2e 

m 

.'y)^2    V^ 
b cos Y m 

2      '2 ~   "       e 

ils_(ya2-b28in2Y-2b COSY) 

(b sin Y) V 2\/a - b sin Y - b COS Y 

0 < * < TT - sin'   — a 
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0 n - sin" — < ♦ < if a (8.25) 

For the electric wave we get in a similar manner 

ik r ' m    i      Q i/k a r -i cos ip   -ik a cos ty 
T8 - -i S /—i  LSL_   * 

k;" L(a sin ^) m 
372 

+ i Va2-b28in2Y       /       b cos Y e 

a(bsinY)3/2/21/a2_b28in2Y.bco8/ 

(^ 
2 .  2 ik  (/a^-b sin    -2b cos Y) m 

0 < i|» < ir - sin"   - a 

ir - sin"    — < ili < ir a 

(8.26) 

From this we get 

IT cos 
3   «I   , eikmr r~8  ^V I" "V C03 * 
-TT^-"1      r,   /.sin*     l572L(asinlj,)3/2 

m 

o /k a   !   -k a cos ^      -ik a cos 'i' ö m     j       m m 

kB /a2- b2sin2Y / bco8 ik (^2-b28in2   -2bcosY) m 

a sintp (b sin    Y) b cos Y 

0  < (j; < if - sin      — , 

IT - sin"    — < * < IT a      T (8.27) 

In the above we retained only the highest order terms in    k a . 

Substituting (8.25) into (6.U) we get for the incident part 

inc u 
_          {     ,M.       n      ■ ILK  r - u L- K I 
P        (    dg'    _1_   y JJL         m      m       m 

).        ? J T2T 2» -i ^   e 
lure ra    ; sin 4       m«-» m 

i[k r-u t- k a cos ij/ + m(0-0,)] 

(8.28) 

■ 
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where the integral is taken only over the illuminated region, that is, 

over the range 

,/ 2    .2 .      ,7 2.2 -1    -ta - b        „,, -1 - Va - b 
-COS  -. rr <   0'   <   COS         j r— a sin 0 a sin 0 

From (8.28) we get 

i(k r- w t- k a cos ij») o       o        o 3        inc p     3   f jflii  e 
37 rU        = 7~ W J  d0     ^2 Uire a ' sin i|» o 

«        im(Kr - fit - Ka cos * + 0 - 0' ) 
x   T7   I     • (8.29) 

By (2.10 we have 

»      im(Kr - nt - Ka cos  ij; + 0 - 0' ) 
-1-   y 

■ 6(Kr - fit - Ka cos i|; + 0 - 0') (8.30) 

2v 
IBF- 

The position of the peak of the delta-function is given by the solution of 

the equation 

Kr - ßt - Ka sin 6 cos 0'   + 0 - 0'   =    0 (8.3l) 

In most situations Ka « — << 1 . (8.31) can be solved by iteration: c 

0«  « 0 + Kr - fit - Ka sin 9 cos(0 + Kr - ßt) + •••     . (8.32) 

In what follows, for simplicity, we will ignore all terms in    Ka. Therefore, 

(8.29) becomes 
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9      ine 
37 ru 

Une a o 
2 30 

i[k r- w t-k a sin Ö cos(0+ Kr- fit)] 
O 0 o 

I 

1 - 8in20 cos2(0 + Kr - ßt) 
(8.33) 

when 0 + Kr - ßt lies in the illuminated region and zero otherwise. 

(8.33) is equivalent to 

ru .inc m     P sin 0 sin(0 + Kr-nt) x 

i»ne al-8in2e co82(0 + Kr-Jit) o 

x     e 
l[k r-w t-k a sin 0 cos(0+ Kr- fit)] o       o        o 

(8.3M 

Carrying out the same calculations for the reflected part we get 

ru ref P sin 0 3in(0 + Kr-frb) la sin ip b cos~ 
Une a ,       .  2n        2,/i^v     T~i  \/b sin Y OI/""^   V2 *  < o    l-sin 0 cos (0 + Kr-nt)   V 2Va - b sin Y -b cos Y 

i[k r-u t + k (\/a-bsinY-2b cos Y)]      (8.35) 
x  e 

0    0    0 

The  angles Y and ♦ are to be evaluated at 0,»0 + Kr-nt. The 

whole expression is zero in the shadow region. Similarly for the electric 

wave we get 

rv Inc J)       cos 0 sin 0 co3(0 •♦• Kr - nt) 

(>*      1- sin26 cos2(0 + Kr - fit) 

x        e 
i[k r-u t-k a sinecos(0 + Kr-nt)]      (8.36) 

0 0 0 
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j/1" "2 si" cos 0 .11- ~ sin Y 
rv ref        P  *       a      /a sin t      b cos Y /a sin i/T 

Y b sin Y ^     l-.ln2»co.2(0*Kr.ßt)   V^IHY    2^2_b28ln2Y_bcoeY 

i[k r-u) t+k  (^a-bsinY - 2b cos  Y)] 
x       e      0        0        c (8.37) 

9. Nature of the Solution 

We recall that the solution is zero when the direction (o,0 + Kr-J}t) 

lies inside the shadow cone of Fig. 3. 0 ♦ Kr - Ot is Just the difference 

between the azimuthal angle 0 of the direction of observation (0,0) and 

the retarded azimuthal angle n(t---) of the revolving dipole. Thus we 

havi- the simple conclusion that the total field is zero when the observa- 

tion point lies inside the retarded shadow region of the dipole. 

We substitute ruinc and rvinc in (8.3I4) and (8.36) into (i,.3) and 

obtain the asymptotic form of the incident field in the illuminated region: 

Einc „  inc ' „ cBinc „   inc „ 0 

r 0 r 0 
2 

. . pk i[k r-ü) t-k a sin« co8(0+Kr-ftt)] „mc nine o      ,    _ o        0       o E0        ■ cB^     ■ -   ■   ■      sin 0 e 
U7reor (9.1) 

When   fl ■ 0    these field components coinc-'de with those of a Hertz dipole 

fixed at the point    x»aty»Otz»0    and oriented parallel to the 

z-axis.    We can define an instantaneous frequency of the incident wave by 

differentiating the exponential with respect to   t  : 

inc u        =    u [1 + ß sin 0 sin(ßt - Kr - 0)] (9.2) o 

where 
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8      =    ~ (9.3) c 

Here    fla    is Just the velocity of the dipole,  and    sin 6 sin^fJt - Kr - 0) 

is the cosine of the angle between the velocity of the dipole and the 

direction of observation at the  retarded time    t .     (9.2) therefore c 

agrees with the Doppler formula for the frequency shift of a moving source. 

Similarly we calculate the  far field of the reflected wave in the 

illuminated region from   rure     and    rvre    in  (8.35)  and  (8.37): 

_,ref _ref       ,- E        «    cB        =0 r r 

cf- cB0    We r 
0 

sin 0 sinV + cos^e 

sin Y 
sin i|* 

sin 0 

b cos Y 

2^r b sin Y - b 

< 

cos Y 

H 2 
sin^Y 

s in2«!* 

7re 

i[k r-u) t+ k ( a2- b2sin2Y - 2b cos Y)] o        o       o x      e 

f „ref       pko      /b sin Y      b cos Y  
= -cB        - ■ l/a sin $      J 2    K2 / "'     " ' 

kit r   * r      2y/a - b sin Y - b cos Y 

cos 0 sin 0,(s in 0  cos 0' 
-/ 

t
5 

2 
a 

sin2Y) 

i[h 

sin 4» 

. r - u) t + kr 0   o   c ,(/?: 2  2 
b sin Y - 1 (9.»♦) 

>»     e 
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The angles    \\)t  y and    0'    are defined in terms of    r, 0, 0    and    t    by 

(6.6),  (8.23)  and (8.32) respectively.    The instantaneous  frequency of 

the reflected wave is given by 

ü)ref ■    w [1 + ß'sin Ö sin(fit - Kr - 0)] (9.5) o 

where 
6' -    «* M2JL        . (9.6) c   sin i|i 

Thus the reflected wave is not of the same  frequency as the incident wave. 

Unlike    ß    in  (9.3)     ß'  is a periodic  function of time.    The quantity 

b sin Y/sin ty   is the  intercept of the ray reflected into the direction 

(0,0)    when projected backwards, on the retarded radius vector of the moving 

dipole as can be seen from Fig.   3.    Despite the apparent similarity of (9.2) 

and (9.5) it does not seem to be possible to interpret the reflected wave 

as due to a virtual moving point source. 
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